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Abstract

Short-term prediction of sea level anomaly (SLA) and ocean surface currents over a domain are
usually carried out using ocean general circulation models. In this study, we present a univariate
machine learning framework using long short term memory networks that forecasts daily-averaged
SLA with a 3 d lead time over the north Indian Ocean using historical satellite altimetry data at a
spatial resolution of ~13 km. Assuming that SLA reanalysis from state-of-the-art systems represent
the pinnacle of performance skill of forecasts from dynamical models, we show that the SLA
forecasts from our model exhibits superior skills through comprehensive analyses. The errors are
typically less than 0.04 m over most of the domain and the correlations are close to unity. The skills
of the daily-averaged forecasted currents with a 3 d lead, estimated using geostrophic and Ekman
theory, are comparable with the best available reanalysis when compared to in-situ observations
both in the open ocean or shelf. Treating these forecasted surface currents as synthetic
observations, we show that assimilating them can significantly improve the instantaneous
subsurface currents during forecasts. The subsurface correlations turn significant with 99%
confidence level across depth which were otherwise mostly insignificant and the errors reduce by
0.1 m-s—!. We demonstrate that the short-term forecast of daily-averaged SLA and surface currents
can be approached as a collection of localized low-dimensional independent univariate systems
thereby reducing computational costs by large margins. This machine learning framework heralds
a paradigm shift in the realm of ocean forecasting.

1. Introduction

Early knowledge of sea level anomaly (SLA) and
ocean surface currents aids coastal zone management,
harbor operations, and offshore marine industries.
Accurate forecasts of ocean surface currents assist dis-
aster management involving marine debris and lost
persons/objects in the sea, influence ocean ecosystems
at the euphotic zone (Gargon et al 2001), and act as an
early predictor of marine animal behavior (Chapman
et al 2011). These forecasts have been conventionally
carried out using ocean general circulation models,
which solve dynamic equations but suffer from unre-
liability stemming from inaccurate initial conditions,

© 2025 The Author(s). Published by IOP Publishing Ltd

approximations in model physics, errors in atmo-
spheric fluxes, etc. Consequently, the forecasts are
compromised even though observations from various
platforms are regularly assimilated into the model to
arrest errors from compounding.

Recent years have seen an abundance of research
endeavors that have used diverse machine learning
(ML) techniques ranging from regression methods
to various types of neural networks to model sea
levels at in-situ locations or over a small area (Nikoo
et al 2018, Guillou and Chapalain 2021, Tur et al
2021, Kartal and Altunkaynak 2024, Shola et al 2024).
The ML methods stand out for their ability to learn
the physical processes involved in the dynamics of
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a predictor—predictand relationship, offering a self-
adaptive, data-driven approach to model the predict-
and. However, successful short-term forecasting of
SLA using univariate ML models wherein only SLA
or some derivative of it serves as both the predictor
and predictand (Kartal and Altunkaynak 2024) is sur-
prising and challenges our perception of the SLA
dynamics. This is due to the lack of other variables
in the predictor (e.g. winds, air pressure, etc), since
the temporal evolution of SLA is dynamically influ-
enced by atmospheric forces and other ocean state
variables such as ocean currents, temperature, and
salinity (Pedlosky 2013, Gill 2016). This astonishment
is further compounded when in-situ SLA is faithfully
predicted through ML using only collocated histor-
ical SLA observations (Kartal and Altunkaynak 2024)
because SLA is known to be remotely influenced even
by waves generated thousands of kilometers away
(Rohith et al 2019, Afroosa et al 2021). This study
suggests that a complex system like an ocean, where
an ocean state variable at any location is dynamic-
ally coupled to all state variables across locations, may
be approximated as a set of simple, separate systems
that operate independently in specific regions. In this
approach, the SLA at any location can be individually
trained using only historical SLA data at that location
and modeled through ML.

However, our attempt to predict daily-averaged
SLA over the north Indian Ocean (NIO) using satel-
lite altimetry via the same formalism (Kartal and
Altunkaynak 2024) involving K-nearest neighbors
(Fix and Hodges 1952) and empirical mode decom-
position (Huang et al 1998) is met with phase lags in
the predictions exceeding the prediction horizon by
several days thereby rendering the framework inef-
fective. There are however other ML frameworks
that can potentially do the job. For example, long
short-term memory (LSTM) networks (Hochreiter
and Schmidhuber 1997), a type of recurrent neural
network (RNN), have gained significant attention
for their ability to model sequential data and cap-
ture long-term dependencies and have emerged as
powerful tools for time series prediction in the mar-
ine sciences. Several studies have explored the applic-
ation of LSTM models to predict SLA, demonstrat-
ing their effectiveness compared to traditional stat-
istical and other ML methods. Accarino et al (2021)
presented a ML approach using LSTM to predict
short-term sea levels at various coastal stations in
the Southern Adriatic Northern Ionian region of the
Mediterranean Sea and demonstrated that the LSTM
model could forecast mean sea levels three days in
advance with higher accuracy than the dynamical
model SHYFEM (Umgiesser et al 2004, Federico et al
2017). LSTM Auto-Encoders has also been shown to
improve SLA predictions over Black Sea with a 3 d
lead time (Yavuzdogan and Kayike1 2025). Jorges et al
(2021) developed and compared ML models to recon-
struct and predict near shore significant wave heights
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with a novel method of integrating bathymetric data.
LSTM came out as the best-performing model com-
pared to traditional ML models, with bathymetry fur-
ther improving the accuracy.

Winona and Adytia (2020) used a deep learning
approach with LSTM to forecast sea level at a tide
gauge location near Bali using 2 months of training
data and found that the LSTM with feedback achieved
outstanding performance (Correlation (R) = 0.999,
root mean squared error (RMSE) = 0.019-0.028) for
forecasts from 7 d to 60 d, outperforming the no-
feedback LSTM and tidal harmonic analysis. Balogun
and Adebisi (2021) used autoregressive integrated
moving average (ARIMA), support vector regres-
sion, and LSTM models to predict sea level variation
along the West Peninsular Malaysia coastline using
combinations of ocean and atmospheric variables,
and found that LSTM with combined inputs per-
formed best (mean R = 0.853), except at one location
where ARIMA excelled, highlighting the importance
of region-specific dominant physical processes. Chen
et al (2023) developed a hybrid VMD-EEMD-LSTM
(Variational Mode Decomposition and Ensemble
Empirical Mode Decomposition) model to predict
sea level near the Dutch coast and found it signi-
ficantly outperformed individual and other hybrid
models, achieving RMSE = 47.2 mm, mean abso-
lute error (MAE) = 33.3 mm, and R* = 0.9, with
improvements up to 58.7% in root mean squared
error (RMSE) and 49.9% in R?> over VMD-LSTM.
In short, LSTM models have been extensively used
across different regions for SLA predictions. Zust
et al (2021) developed high-performance deep tidal
residual estimation method using atmospheric data,
a deep-learning-based ensemble model for forecast-
ing sea level in the northern Adriatic using European
Centre for Medium-Range Weather Forecasts atmo-
spheric and sea level data, which, with a 72 h lead
time, outperformed the operational NEMO ocean
model by achieving lower RMSEs (10.8 cm overall;
20.2 cm during storm surges) while drastically redu-
cing computational costs, thereby demonstrating its
potential for operational coastal flood forecasting.

The success of LSTM in predicting SLA across
different basins encourages us to ask the following
question: using LSTM, is it possible to forecast short-
term (up to few days) daily-averaged SLA over the
domain of NIO using only satellite altimetry data
that has been available since 19932 This strategy addi-
tionally promises the possibility of short-term pre-
diction of daily-averaged low-frequency surface cur-
rents which is broadly a combination of geostrophic
and Ekman components (Sudre et al 2013). The geo-
strophic (Ekman) component of the surface current
can be estimated from the forecasted SLA (forecas-
ted winds). This diagnostic mechanism involves no
integration over time (local acceleration ignored) and
hence is realistic at only low frequencies. The veracity
of such surface current predictions however, remains
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to be tested since this simplistic formalism of surface
current estimation neglects the contributions arising
from ageostrophic currents including local accelera-
tion, the Stommel shear dynamics, and surface buoy-
ancy gradients (Dohan 2021).

2. Methods

LSTM (Hochreiter and Schmidhuber 1997) networks
are specialized RNNs designed to capture long-term
dependencies in sequential data. Traditional RNNs
are often hindered by the vanishing gradient problem,
making it difficult to retain information over exten-
ded sequences (Hewamalage et al 2021). LSTMs mit-
igate this limitation by using memory cells and gat-
ing mechanisms comprising input, forget, and output
gates that dynamically control and optimize inform-
ation flow by selectively retaining or discarding past
information, thereby enhancing their capacity to cap-
ture and utilize long-range temporal dependencies
effectively. Furthermore, LSTM networks employ a
multiplicative forget layer with learnable paramet-
ers to manage memory more efficiently, enabling the
model to determine the relevance of the information
(Accarino et al 2021).

Distinct univariate LSTM models are developed
for each target Archiving Validation and
Interpretation of Satellite Oceanographic (AVISO)
grid point over NIO (5°N-30°N; 45°E-100°E) with
an objective to predict daily-averaged SLA witha 7 d
lead at a spatial resolution of ~13 km. For each target
grid point, we consider the daily-averaged altimetry
SLA over a 3 x 3 grid centered around the target grid
point with a 2 d lookback period. Consequently, the
input length consists of 18 values for every forecast
of each target grid. The total period of consideration
is 2011-2020 with 2011-2018 as training period and
2019-2020 as the testing period. This results in input
features with a shape of (2916, 18) and output features
with a shape of (2916, 1) for every target grid point in
the NIO during the training period. Both the input
and output features were randomized over the first
axis (keeping track of indices) to disrupt temporal
continuity. The same training process is repeated for
every target grid over N1O (44865 grid points exclud-
ing land). The prediction after the training suffered
from lags ranging from 2—6 d across all grids, with the
median lag estimated to be 4 d observed in approxim-
ately 65% of the domain (see supplementary figure
S1). The issue of phase lags is not an isolated problem
but has been acknowledged in many past studies (Polz
et al 2024, Zhang et al 2024). It is also recognized that
these lags can be mitigated, to some extent, by ran-
domizing the input sequences—a strategy we have
employed in our study. We apply the same random-
ization technique to the input features of shape (725,
18) during the testing period and use the model to
forecast over the 2 year testing period. Thereafter, the
predictions during the testing period are lag adjusted
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by 4 d effectively transforming them into 3 d fore-
casts. All the LSTM models used were constructed
using the TensorFlow Python package (Dean and
Monga 2015). The performance of the LSTM model
for various lead times is presented in supplementary
figure S2.

The model architecture consisted of two stacked
LSTM layers, each with 50 units and ReLU activa-
tion, each followed by dropout layers with dropout
rate = 0.2 to mitigate over fitting. The output from
the second LSTM layer was fed into a dense layer
with 25 units and ReLU activation, followed by a
final dense layer with a single output neuron for
regression. The network was trained using the Adam
optimizer with a learning rate of 0.001, and MSE
was employed as the loss function. Training was per-
formed for 50 epochs with a batch size of 32.

We emphasize that the LSTM models are oblivi-
ous of the testing dataset during the training phase
thereby obliterating issues arising from data leak-
age. Henceforth, all variables are daily-averaged and
LSTM-SLA represents predicted SLA from LSTM
with a lead of 3 d unless mentioned otherwise.

To evaluate the performance of the LSTM-based
SLA predictions, the model outputs are validated
against AVISO altimetry observations and compared
with the high-resolution (~9 km) global ocean phys-
ics reanalysis GLORYS12v1 (henceforth GLORYS)
product (Bonjean and Lagerloef 2002), which is per-
haps the best available ocean reanalysis (Castillo-
Trujillo et al 2023). GLORYS assimilates SLA among
other observations (see supplementary information
for more details). The 3 d forecasted SLA fields
are used to compute geostrophic currents, while
Ekman currents are derived using 3 d wind forecasts
from (National Centre for Medium Range Weather
Forecasting, Prasad et al 2014), which together yield
the total surface current estimates. These predicted
currents, alongside GLORYS surface currents, are val-
idated against the ocean surface current analysis real-
time (OSCAR; Dohan 2021) dataset. Additionally,
for validation against in-situ observations, daily-
averaged surface currents from twelve ocean moored
buoy network for NIO (OMNI) mooring buoys dis-
tributed across the NIO and from an HF-RADAR sys-
tem deployed along the Tamil Nadu coast are used.

3. Results

3.1.SLA

Assuming that GLORYS represents the asymptotic
upper bound of the forecast skill from dynamical
models, the performance of LSTM-SLA is compared
against the performance of GLORYS-SLA for the
period 2019-2020. Consequently, if the LSTM man-
ages to outclass this reanalysis it shall outperform
forecasts from dynamical models as well. Both the
models are compared against gridded level 4 SLA
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Figure 1. SLA skill comparison of LSTM and GLORYS. RMSE in SLA (in meters) from (a) LSTM and (c) GLORYS with respect to
altimetry SLA for the period 2019-2020. The RMSE color bar is on the left. Correlation in SLA from (b) LSTM and (d) GLORYS
with respect to altimetry SLA for the period 2019-2020. The correlation color bar is on the right. Correlation values larger than
0.074 are more than 95% significant. Domain-averaged time series of () RMSE and (f) correlation coefficient in SLA from LSTM
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(red) and GLORYS (blue) with respect to SLA from AVISO.

(0.125° x 0.125°) from AVISO altimetry. It is import-
ant to note that the gridded AVISO-SLA is derived
through optimal interpolation of multiple satellite
track measurements and is therefore not always
actual observation (see supplementary information
for more details). The long term mean at each loca-
tion is subtracted from AVISO and GLORYS before
comparison.

Figure 1 displays the RMSE and Pearson correla-
tion coefficients from two models—LSTM-SLA and
GLORYS-SLA—across NIO. The RMSE in LSTM-
SLA is ~2—4 cm across most of the domain except
at some isolated patches in the western Arabian
Sea and the northwestern Bay of Bengal, where the
RMSE reaches up to ~7 cm (figure 1(a)). In con-
trast, the RMSE in GLORYS-SLA (figure 1(c)) is lar-
ger by 3—4 cm across the domain. The LSTM-SLA
exhibits over 90% correlation with the satellite alti-
metry (figure 1(b)), indicating the strong skill of
the LSTM model in accurately forecasting the phase
of the observations. In comparison, the correlations
derived from GLORYS (figure 1(d)) also demon-
strate strong associations, but certain regions near the
northeastern Arabian Sea exhibiting lesser correla-
tions of ~70%. The time series of domain-averaged
RMSE in LSTM-SLA remains below 4 cm across the
period of our study. The GLORYS RMSE, on the
other hand, is about twice larger (see figure 1(e)).
The domain-averaged correlation coefficient in the

LSTM remains close to unity across the entire
period (see figure 1(f)). GLORYS exhibits relatively
weaker correlation (~0.9), indicating its limitations
in reproducing the phases of the SLA correctly.
Although the dynamical model GLORYS demon-
strates a good skill in terms of phase alignment with
observations, it is important to emphasize that the
LSTM outperforms GLORYS by achieving higher
accuracy in forecasting SLA over the NIO three days
in advance. This is surprising given that a forecasted
SLA with a lead time of 3 d outclasses one of the best
state-of-the-art SLA reanalysis which is generated in
hindcast.

Traditional evaluation metrics, such as correla-
tion and RMSE, provide useful insights into forecast
accuracy and skill by focusing on overall agreement,
linear dependence, and error magnitude (Murphy
1993). However, probability distributions like mar-
ginal, joint and conditional distributions, which
contains all time independent information relevant
to evaluating forecast quality and probability-based
metrics, such as Kullback-Leibler divergence (KL,
Kullback and Leibler 1951) and mutual information
(Thomas et al 2005), offer a more comprehensive
evaluation by considering the entire distribution of
modeled and observed values. The KL divergence
between LSTM and AVISO SLA is 0.0266, whereas
for GLORYS, it is 1.8751—larger by two orders of
magnitude—suggesting that LSTM provides a more

4
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Figure 2. Conditional probability distributions. (a) Conditional probability distribution of observations (AVISO SLA) given
LSTM-SLA. (b) Conditional probability distribution of observations (AVISO SLA) given GLORYS-SLA. The inset of figure(a)
represents the conditional probability of AVISO SLA at a given SLA = 0.015 m from LSTM (red) and from GLORYS (blue). The
dashed vertical line is at 0.015 m. Similarly, the inset of figure(b) shows the conditional probability of AVISO SLA at a given
SLA = 0.33 m from LSTM (red) and from GLORYS (blue). The dashed vertical line is at 0.33 m.

accurate probabilistic representation. Additionally,
we computed symmetric uncertainty (SU; Witten
et al 2005), a normalized version of mutual inform-
ation, which quantifies how much information the
forecast retains about the observations. A higher
SU indicates better predictive skill. The SU measure
between LSTM and observations is 0.4488, compared
to 0.3044 for GLORYS, further supporting that LSTM
provides better predictive performance. The compar-
ison of joint probability density of AVISO SLA and
LSTM-SLA with that of AVISO SLA and GLORYS-
SLA during 2019-2020 attests to these findings (see
supplementary figure S3). Overall, these probability-
based evaluations confirm that although both models
reflect important features of the observed SLA, LSTM
shows better accuracy in its predictions. Notably, the
3 d lead SLA forecast from the LSTM model outper-
forms GLORYS SLA reanalysis.

Reliability (Murphy 1993) is another key aspect
of forecast evaluation that measures how well the
forecast eventually agrees with actual observations.
To evaluate how reliable the models are, we plot the
conditional probability distribution of AVISO SLA
based on LSTM-SLA (figure 2(a)) and GLORYS-SLA
(figure 2(b)). In both plots, the densest areas fall along
the diagonal, showing a strong match between predic-
tions and real observations. However, there are clear
differences in their probability patterns. The LSTM
model shows a tighter, more focused pattern along
the diagonal, meaning it predicts SLA more accurately
and with less spread. On the other hand, GLORYS
has a wider distribution, especially at higher SLA val-
ues, which suggests more uncertainty. The inset plots
help highlight these differences further. When either
LSTM or GLORYS predicts an SLA of 0.015 m, the
observed SLA tends to align closely with this predicted
value (see inset of figure 2(a)). Notably, 96% of the
time, the observation lies within the predicted LSTM

SLA 0f0.015 = 0.04 m. In contrast, GLORYS achieves
an accuracy rate of 87%. However, the accuracy of
LSTM (GLORYS) decreases to 67% (50%) when it
predicts (estimates) a larger SLA = 0.33 m. This is
illustrated in the inset of figure 2(b). These findings
suggest that LSTM provides very reliable forecasts
possibly unmatched by any dynamical models.

3.2. Surface currents

The remarkable fidelity of the forecasted SLA over
NIO promises an avenue to forecast daily-averaged
ocean surface currents, which can be approximated
as a sum of geostrophic and Ekman components. In
this study, the surface geostrophic currents in the
LSTM framework are computed from the forecasted
SLA while the Ekman currents are estimated from
the forecasted winds (see supplementary informa-
tion for details). The forecasted surface currents,
therefore, neglect contributions from Stommel shear
dynamics, surface buoyancy gradients etc. In contrast,
GLORYS provides dynamically obtained hindcasted
surface currents estimates, i.e. it includes all known
contributions in addition to the assimilation of vari-
ous observations including SLA. In the absence of any
basin-scale surface current observations, surface cur-
rents from these two systems—LSTM and GLORYS—
are compared to daily data from the OSCAR near-
surface (top 30 m averaged) currents. The GLORYS
currents are also averaged over the top 30 m.

Both the zonal and meridional predicted surface
currents from LSTM with a lead of 3 d show smaller
RMSE and larger correlations with respect to corres-
ponding OSCAR currents in comparison to surface
currents from GLORYS (see supplementary figures S4
and S5). Surprisingly, the performance of the fore-
casted surface current in the LSTM estimated from
suboptimal 3rd day forecasted winds is better than
the GLORYS reanalysis derived from optimal winds.
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Figure 3. Skill comparison of surface currents from the LSTM and GLORYS. Scatter plots comparison of the time series of zonal
currents from (a) LSTM and (c) GLORYS with zonal currents from 12 OMNI buoys. Scatter plots comparison of the time series
of meridional currents from (b) LSTM and (d) GLORYS with meridional currents from 12 OMNI buoys. The x-axis (y-axis)
represents the buoy (model) current. RMSE (in m - s~!) and correlation indices are shown in the bottom right of each panel. All

correlation values are >95% significant. The location of the buoys are marked in the inset plot of (a).

This is possibly because the geostrophic surface cur-
rents (derived from SLA) dominate the Ekman sur-
face currents (derived from winds) in the NIO across
all seasons of a year (see supplementary figure S6).
This analysis also indicates that the key to improving
surface currents in the NIO may lie in the improved
reproduction of SLA in the dynamical models.

Comparison with OSCAR is only indicative and
not a true reflection of the skills of the two models
because of two reasons—(1) OSCAR currents are not
actual observations, (2) ocean currents shows strong
variability along depth in NIO (see figure 5(b) in
Venkatesan ef al 2013) which is captured in OSCAR
and GLORYS (top 30 m averaged) but not in LSTM.
Therefore we evaluate LSTM and GLORYS surface
currents against daily-averaged surface currents from
12 in-situ OMNI buoys (Venkatesan et al 2013) (see
supplementary table 1 for more details) spread across
the NIO that measure surface currents every hour
with a resolution of 1 cm - s™! and accuracy of
5mm-s~L.

Figure 3 shows scatter plots of the zonal and meri-
dional currents from 12 OMNI buoys with zonal
and meridional currents from the LSTM model
(figures 4(a) and (b)) and GLORYS (figures 4(c)
and (d)). The forecasted currents from LSTM and
the surface current reanalysis from GLORYS show a

6

reasonably good agreement with the buoy currents
with low RMSE (~0.16 m - s~!) and strong correl-
ations exceeding 0.7. The skills of these two systems
in simulating surface currents appear comparable.
These results demonstrate the ability of the LSTM
model to forecast surface currents with fidelity across
the domain with skills similar to GLORYS but with a
lead time of 3 d.

The performance of this ML framework is also
tested close to the coast with respect to HF-RADAR
that measures surface currents every 6 km up to
200 km from the coast and thereafter compared
against GLORYS. The distribution of errors in zonal
and meridional currents from these two models show
that the errors in LSTM is comparable to that of
GLORYS (see supplementary figure S7). The RMSE
is similar in both the models across the directions but
GLORYS exhibits marginally better correlations. The
similar spread of the interquartile range in LSTM and
GLORYS indicates that most of the model departures
are equally spread around zero. The long (short) tails
in the error distribution of meridional (zonal) cur-
rents in both LSTM and GLORYS demonstrates that
there are large departures in modeling the meridional
components, in agreement with previous findings
(Lellouche et al 2021). It shows that the surface coastal
currents predicted by LSTM are comparable with the
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0.418 represents the threshold correlation coefficient for 99% confidence level. (b) RMSE (in m - s~ ') of zonal (black) and
meridional (red) currents from ML-ROMS (solid) and OP-ROMS (dashed) with respect to ADCP measurements for the same

period.

surface coastal current reanalyses generated by the
dynamical model GLORYS. In short, LSTM predicts
GLORYS-like surface currents both in open ocean
and near-shore but 3 d ahead of time.

The accuracy of the forecasted SLA and surface
currents raise the possibility of treating it as ‘syn-
thetic’ observations and assimilate it during the ocean
forecast. This assimilation is likely to improve the sub-
surface features as well. For example, we treat the
3rd day predicted surface currents as synthetic obser-
vations and assimilate it in the ROMS model dur-
ing ocean forecast (call it ML-ROMS). ML-ROMS
do not assimilate any other observations. And com-
pare its instantaneous sub-surface currents against
the analysis from a running operational model based
on ROMS (OP-ROMS) that assimilates SLA, SST,
temperature and salinity using LETKF (Baduru et al
2019, Francis et al 2020) every 5 d during Jan—June,
2020. Both these systems are otherwise identical. We
compare the instantaneous currents at ¢t = 00 UTC of
every 5th day from these two systems against ¢t = 00
UTC currents measured by an ADCP stationed at
85.8°E, 19.4°N off the east coast of India (figure 4).

The RMSE of the zonal (meridional) current at 25 m
improves by ~0.15 m - s=! (~0.1 m - s~!). This
is significant given that the standard deviation in
observed zonal (meridional) currents at 25 m is
0.4m-s!(~0.2m-s1). Significant improvements
are observed even beyond the mean climatological
thermocline depth of 72 m estimated from World
Ocean Atlas monthly climatology. A strong improve-
ment in correlation is observed with most prom-
inent improvements at 60—120 m. Interestingly, the
correlations in zonal and meridional currents from
ML-ROMS remains significant at the 99% confid-
ence level across depth while only the meridional
current remains significant in OP-ROMS in the top
60 m. This case study underscores the importance of
these synthetic observations, which promise substan-
tial enhancements in ocean state forecasts, offering
significant benefits to various stakeholders. The read-
ers should however be mindful that these ‘synthetic’
observations do not include the ageostrophic com-
ponents. Consequently, the veracity of this frame-
work is likely to suffer in regions where ageostrophic
components are significant.
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4, Conclusion and discussion

This study introduces a novel methodology of gener-
ating realistic daily-averaged SLA and surface currents
with a lead time of 3 d using a univariate ML frame-
work. The 3rd day forecasted SLA over NIO follows
the altimetry data with striking accuracy and is super-
ior to GLORYS-SLA reanalysis. The forecasted ocean
surface currents with a 3 d lead time show a close cor-
respondence with the surface currents from gridded
OSCAR analysis, in-situ open ocean OMNI buoys and
coastal currents from HF-RADAR. Needless to men-
tion, this entire framework can be easily extended to
the global domain with suitable adjustments on the
estimation of geostrophic currents in the equatorial
belt (Sudre et al 2013, Dohan 2021).

The success of this univariate approach high-
lights an important insight: SLA prediction at a given
location—or across a region—can be achieved using
only historical SLA data from neighboring areas. This
is counterintuitive, considering that the dynamical
theory of SLA evolution (Pedlosky 2013) involves
complex interactions between oceanic and atmo-
spheric state variables. Moreover, SLA is known to
be remotely influenced by wave activity originating
thousands of kilometers away (Rohith et al 2019), as
well as by local bathymetry. Nevertheless, the effic-
acy of this simplistic counterintuitive SLA prediction
framework and the subsequent derivation of surface
currents raises hope about the possibility of similar
frameworks for other ocean state variables. The vera-
city of these predictions opens up the possibility of
using these as synthetic observations and assimilat-
ing them in dynamical models during forecasts when
no actual observations are available. Such a mech-
anism shall help to propagate surface information
downwards improving the sub-surface features dur-
ing forecasts leading to a holistic improvement in the
three-dimensional ocean state prediction.

The application of ML models in sea level pre-
diction, while very promising, comes with limita-
tions (Lou et al 2023). Since the effectiveness of these
models rely extensively on historical data, extract-
ing meaningful information beyond the conditions
enshrined in the training datasets remains challen-
ging. The quality, quantity and spatio-temporal res-
olution of training datasets determine some of the
limitations of the prediction system. Moreover, the
stochastic nature of climate systems and their com-
plex interactions with other environmental factors
make it difficult for these models to capture and pre-
dict the full range of variability in sea levels, especially
during cyclones, storm surges, etc (Qin et al 2023).

Data availability statement

The SLA and mean dynamic topography from AVISO
is freely available at https://data.marine.copernicus.e

u/product/SEALEVEL_GLO_PHY_L4_MY_008_047.
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The GLORYS12V1 SLA and currents are avail-
able at https://data.marine.copernicus.eu/product/
GLOBAL_MULTIYEAR_PHY_001_030/services.
The OSCAR currents are available at https://podaac.
jpl.nasa.gov/dataset/OSCAR_L4_OC_FINAL_V2.
0. World Ocean Atlas (WOA) temperature data
is available at Asia-Pacific Data Research Centre
(https://apdrc.soest.hawaii.edu/data/). ADCP cur-
rent data, Buoy current data (https://incois.gov.in/
portal/datainfo/mb.jsp) and HF-RADAR current
data  (https://incois.gov.in/portal/datainfo/hfradar.
jsp) is available upon request. The predicted SLA,
surface currents, and subsurface currents from the
OP-ROMS model and ML-ROMS model are avail-
able at the following link (https://doi.org/10.5281/
zeno0do.15099558).

The data that support the findings of this study are
openly available at the following URL/DOI: https://
doi.org/10.528 1/zenodo.15099558.
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