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Abstract
Wepresent a univariate hybridmachine learning framework to predict daily high resolution Sea Surface
Temperature (SST)near theGulf ofKutch region at a resolutionof∼5.5 km.The hybridmodel
integrates IntrinsicModeFunctions (IMF)derived fromvariationalmodedecompositionwith a Long
Short-TermMemory (LSTM)network to augment predictive skill. The predicted SSTdemonstrates
impressive performance up to lead times of 7 days.Using statisticalmetrics likeKullback-Leibler
divergence andmutual information,we show that the SSTpredicted from the hybridmodelwith a lead
timeof 3 days decisively outperforms the high-resolutionGLORYSSST reanalysis let alone forecast skills
of a data-assimilated dynamicalmodel. Using conditional probability,we show that the SST forecasts
from thehybridmodel are quite reliable over the entire range of SSTobservations in the studydomain.
In contrast, the reliability ofGLORYS falters in the lower range of SSTobservations.Also, the hybrid
model excels in capturingfine-scale SST features, such as SST fronts, and detectingMarineHeatwaves
(MHWs)up to3 days in advance. These capabilities hold significant applications forPotential Fishing
Zone identification and coral bleaching alerts. The hybridmodel framework is also adept at forecasting
location specific high frequency (3 hourly) SSTwith a lead timeof a day.

1. Introduction

Sea Surface Temperature (SST), which is perhaps themost widely used and ubiquitous ocean state variable, not
only plays a vital role in the dynamics of the ocean but also strongly influences atmospheric analysis andweather
forecasts. Accurate short-termprediction of SST can serve a suite of applications. For example, short-term
accurate prediction of SST over a basin can improve the regional weather forecast. The predicted SST can be
treated as synthetic observations and improve the quality of ocean state forecast through data assimilation.
Predicted SST fronts can assist offshore fishermen in identifying the inhabited regions of targetfish because
different water temperatures attract and concentrate differentfish species (IOCCG2009). Thus, SST plays a
crucial role in aquaculture, particularly in the survival ofmany aquatic species likefish and shrimp. The
predicted SST can also help to identify appropriate sites formovingmarine cages (Roxanne 2016). Additionally,
several studies have shown that hurricanes and coral bleaching can result from abnormally warmwater (Liu et al
2013,McTaggart-Cowan et al 2015,Mohanty et al 2021). Impending knowledge of abnormally warmwater can
aid in issuingmarine heatwave forecasts. In short, SST prediction can support variousmanagement and
adaptation initiatives formarine ecosystems and tourism. From all these considerations andmanymore, there is
a growing demand for spatially comprehensivemaps of predicted SST, particularly thosewith higher accuracy
and resolution that can demonstrate an increasing number of applications (Aparna et al 2018).

OPEN ACCESS

RECEIVED

13March 2025

REVISED

4 June 2025

ACCEPTED FOR PUBLICATION

24 June 2025

PUBLISHED

2 July 2025

Original content from this
workmay be used under
the terms of the Creative
CommonsAttribution 4.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2025TheAuthor(s). Published by IOPPublishing Ltd



There are primarily two approaches throughwhich spatialmaps of SST are predicted. Thefirst approach
involves SST predictions through ocean general circulationmodels likeMOM,HYCOM,NEMO,MITgcm,
ROMS etc, which are often equippedwith data assimilation. Thesemodels are formulated based on the complex
mechanical and thermodynamic interactions among the ocean state variables. The complexity of the dynamics is
further compoundedwhen chemical and biological state variables, which significantlymodulates the SST, are
introduced into themodels. These dynamicalmodels havemade giant leaps over the past decades in their
efficacy but are still fraught with issues like inaccurate initial conditions, approximate fluxes etc. Another issue
that plagues thesemodels is the empirical parameterizations of various processes likemixing, bulkflux
parameterizations etc, which casts a strong imprint on the SST evolution.Most of these parameterization
schemes have been designed based on expeditions carried out in the Pacific (Large et al 1994) andAtlantic Ocean
(Halliwell 2004). Consequently, these parameterization schemes do not fare equally well across all basins and
across all seasons. Themodels are also often of lower resolution—particularly the basin scalemodels—than the
high-resolution (∼2 km) satellite SST products resulting in reduced representation of the processes. The
imprints of all these deficiencies on the SST predictions result in a less than accurate SST prediction leaving scope
for improvements.With increasing lead times and no futuristic SST observations to constrain themodel from
diverging through data assimilation, these errors grow in time during the SST forecast.

The second approach in SST prediction leans towards a data-driven approach. This approach has gained
traction in the last couple of decades owing to the availability of SSTmeasurements for long periods. The satellite
measurement of SST started in 1964 through theNimbus-1 satellite at a resolution of∼8.5 km. The advent of
AdvancedVeryHighResolutionRadiometer (AVHRR) in the late 70s improved the SST coverage and resolution
whichwas further augmentedwith the AdvancedMicrowave Scanning Radiometer (AMSRE) in late 90s that
couldmeasure SST even on cloudy conditions albeit at lower resolution. The availability of SST data over
prolonged periods facilitated a surge during the last decade or so in the use of various data-driven techniques
includingmachine learning (ML) to predict SST. These data-drivenmethods have an inherent advantage over
the dynamicalmodels. They do not suffer from the samemaladies that the dynamicalmodels do. Unlike the
dynamicalmodels, the data-driven approaches learn the intricate relationships between the variables on their
own and are therefore free from explicit assumptions undertaken to ease the solution to the dynamics of the
model. In addition, these data-drivenmodels for SST forecasts are computationally faster and canwork in a
high-resolution setting—the resolution being dictated by the resolution of the observation networks. For
example, theOperational Sea Surface Temperature and Ice Analysis (OSTIA) system generates SST (foundation
SST to be specific)maps at a resolution of∼5.5 km (Good et al 2020) over entire basins. One of themajor pitfalls
of data-driven approaches is the inherent difficulty in deciphering the influence of various physical processes on
SST thereby contributing little to the physical understanding of the SST behavior.

The deep learningmethods for SST prediction can be broadly categorized into twomain groups. Thefirst
group refers to location-specific prediction (Patil et al 2016, Sarkar et al 2020,Wolff et al 2020,Usharani 2023,
andmanymore), while the other produces a regionalmap of SST values (Sepp and Schmidhuber 1997, Tripathi
et al 2006, Aparna et al 2018, Yang et al 2018, Zheng et al 2020, Vytla et al 2025, andmanymore). Our focus in
this study is on the regionalmaps of short-term (∼few days) SST predictions. Different variants of neural
networks have been used over the last decade to predict short-term SST over a region.Of late, long short term
memory (LSTM), which is a kind of recurrent neural network (RNN), or somemodified variant of LSTMhas
gained a lot of attention. For example, a fully connected LSTM (Sepp and Schmidhuber 1997) layer with a
convolution layer was used to illustrate SST data’s spatial and temporal pattern over the Bohai Sea (Yang et al
2018). They have shown a spatialmap of the difference between ground truth and prediction over theChina Sea,
mainly in the range from0.5 °C to 1.0 °C. Zheng et al (2020) implemented a deep learningmodel by cascading
and stacking convolutional layers to predict the SSTmap for the next time step. Shao et al (2021) used
multivariate empirical orthogonal function on SST and sea surface height anomaly on themachine learning
model (Conv1DLSTM) to predict SST over the SouthChina Sea that exhibits an impressive domain-averaged
RMSEof∼0.46 °Cwith a lead time of 10 days. They have also shown that thismodel predicts SST reasonably well
during extreme events exhibiting anRMSEof 0.334 °C for a lead time of 3 days. Thismodel however does not
performwell to reproduce the small-scale features.Wei andGuan (2021) used a 3DConv-LSTM to predict daily
SST over theChina Sea using different lead times from1day to 7 days. This study found a good agreement with
OSTIA SST till a prediction horizon of 3 days. The RMSE increases from0.41 °C to 0.53 °Cwhen the lead time is
extended from3 to 7 days. Choi et al (2023) used ERA5 and LSTM to predict SST near theKorean Peninsula.
Shuang et al (2023) proposed a hybrid deep learningmodel to predict SST at a resolution of∼11 kmover the
SouthChina Sea that utilizes a data analysismethod calledVariationalModeDecomposition (VMD), and a deep
learningmodel calledMemory inMemory (MIM;Wang et al 2019)which is an improved version of LSTM. The
VMDdecomposes the time-series of a signal into intrinsicmode functions (IMFs)which represent distinct
frequency bands. Thismodel predicts SSTwith improved accuracy (RMSE= 0.247 °C) for a lead time of 7 days.
Thismodel, despite its impressive performance, has not been compared against state-of-the-art reanalyses.
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Instead,most of the studies on the short-termprediction of SST compare outcomes against othermachine
learningmodels. TheVMD-MIMmodel, owing to its relatively low resolution, has also not been tested for the
veracity of the fine scale spatial structures like SST fronts.

A fewML studies on regionalmaps of SST predictions have been done in the IndianOcean aswell where our
study is based. Using only the past few days of historical daily SST data from theModerate Resolution Imaging
Spectroradiometer (MODIS) at a spatial resolution of 4 km, Aparna et al (2018)usedArtificial Neural Network
(ANN) to predict SST and SST fronts with a lead time of 1 day over a small domain in the northeasternArabian
Seawith reasonable accuracy. Tripathi et al (2006) utilized anANNover a small IndianOcean region (96 °E–
104 °E, 27 °S–35 °S) to predict SST anomalies. A recent study byVytla et al (2025) investigated the performance
of variousML techniques for predicting daily SST over three small domains (0.25million sq kmof area each) in
the Arabian Sea, Bay of Bengal, and South IndianOcean regions at a resolution of∼25 kmusing SST data from
Optimum Interpolation Sea Surface Temperature (OISST). The study evaluated variousMLmodels with lead
times of 1–7 days. This study identified that the LSTMmodel fares best when the last 50 days of SST data is
provided as input to theMLmodel. It exhibited a prediction error of∼0.24 °C for a 7-day forecast. In short,
there have been several studies across various ocean basins including the IndianOceanwhereMLmodels have
been applied for SST predictionswith varying degrees of success.

Taking inspiration fromShuang et al (2023) andVytla et al (2025), andwith an aim to continue the
experimentation forward, we ask a set of questions outlined below:

(1) The reanalysis, derived from the amalgamation of observation and dynamical model, is supposedly the best
version of SST.Most existing studies primarily focus on comparing the performance of variousmachine
learningmodels against each other but do not compare the performance skill of the forecast against
reanalyses. Can a hybridmachine learningmodel for sea surface temperature be developedwhose
prediction skills outscores the sea surface temperature reanalysis from a state-of-the-art dynamicalmodel
equippedwith data assimilation? If so, at what lead times? If the hybridmodel beats the best available
reanalysis over a reasonably long period of analysis, it is implicitly assumed that it shall beat short-term
forecasts fromdynamicalmodels. A success is a step forward towards operationalization of short-term SST
forecasts usingmachine learning.

(2) How reliable are the forecasts from the hybrid model? In other words, how often do the forecasts from the
hybridmodel concurwith the observations?

(3) Aparna et al (2018) showed that SST fronts can be predicted with a lead time of 1 day. Can this hybridmodel
predict the observed sea surface temperature frontswhich arefine-scale structures andoftenmisrepresented
in state-of-the-art reanalysis with a lead time larger than a day? An extended lead time shall help in issuing
Potential Fishing Zone forecasts to thefishermenwell in advance.

(4) Can this hybrid model predict high frequency (3-hourly) sea surface temperature variability observed in
buoys? If so, at what lead times?We have not come across anymachine learning studies which have
attempted to predict high frequency sea surface temperature signals.

(5) Howgood does this hybridmodel performduring extreme events like cyclones?

(6) How truthful this hybrid model is for applications like marine heat wave forecasts? This is important given
thatmarine heat waves are known to drive coral bleaching (Hughes et al 2017), spread harmful algal blooms
(Trainer et al 2020) and adversely impactfishing (Mills et al 2013).

In this study, we develop a hybridmodel similar toVMD-MIMand use the north-eastern Arabian Sea as the
testbed to seek answers to the above questions. Instead of usingMIM,we use the relatively simplermachine
learningmodel LSTMdespite the fact that LSTM suffers from gradient problems in the presence of data
abundance and its relative insufficiency to extract spatial features (Rao et al 2018, Xu et al 2020).We shall show
that irrespective of these known concerns, our hybridmodel extracts high resolution spatio-temporal features
with surprising deftness.

We have organized the rest of themanuscript in the following sequence. Section 2 describes the study area
and the various sets of data used in this study. Section 2 also discusses the LSTMmodel that was implemented to
predict the SST. Essential details of the reanalysis against which the predicted SST from theMLmodel has been
compared is also briefly discussed. Section 3 highlights the analysis carried out in this study, followed by the
conclusions in section 4.
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2.Data andmethods

This section presents the details about the study area, the observations used in this study and short descriptions
of the numericalmodels fromwhich reanalysis/forecast data has been used.We shall also outline the hybrid
machine learning framework in this section.

2.1.Data and study area
To address the questions we posed in the Introduction, it is important tofind a domain that is rich in SST fronts
(abundance infisheries), prone toMHWs, houses a buoy thatmeasures SST at high frequencies and is testament
to extreme events like cyclones. Fortunately, theGulf of Kutch and its surroundingsmeet all these criteria. It is a
knownfishing ground forfishermen and had been designated asMarine Sanctuary andMarineNational Park in
1980 and 1982 respectively with hundreds of coral species, algae, sponges andmangroves. A buoy is present
within its perimeters thatmeasures SST at a frequency of 1 h. This domain has also been experiencing elevated
MHWactivities with climate change (Chatterjee et al 2022) and haswitnessed extreme events in recent times like
cycloneVayu in 2019 and cyclone Tauktae in 2021. It is for these reasonswe choose the north-eastern Arabian
Sea encompassing theGulf of Kutch as our area of study. The extent of our study area ranges from (67–73) °E
and (18–23)°N (see inset offigure 1).

We use near real time level 4 daily SST fromOSTIA (Donlon et al 2012, Good et al 2020) at a horizontal
resolution of∼5.5 kmover our study area covering the period from01 Jan 2012 to 31Dec 2021 to train and test
the hybridmachine learning framework for SSTmap predictions. OSTIA provides gap free gridded SST analysis
derived from satellite observations (both infrared andmicrowave radiometers) and in situ data from ships,
moored buoys and drifting buoys. TheOSTIA SST analysis when compared to all the near-surface (3–5m)Argo
data from the EN4dataset (∼1300 observations) over the entire IndianOcean (encompassing our domain)
shows an impressivemean difference of∼−0.09 °C (table VI.6 in https://documentation.marine.copernicus.
eu/QUID/CMEMS-SST-QUID-010-001.pdf). Even thoughOSTIA SST is an analysis generated frommultiple
observational platforms, we shall treat it as observations in this study. It is also important tomention here that
the Argo data has an accuracy of∼0.005 °C (Oka andAndo 2004). In short, the accuracy ofOSTIA SST over the
IndianOcean (and hence over our study area) is very high.We plot the daily SST fromOSTIA at 70.225 °E,
22.925 °N (location exhibitingmaximumSST variability) infigure 1 to apprise the readers of the typical range of
variability in SST during the period 2012–2021.

We have also used a buoy located at 67.5 °E, 18.5 °N to train and test the hybridmodel at high frequencies (3-
hourly). The buoy observes the SST at a depth of 1m frommean sea level every hour but owing tomissing data
acrossmultiple time-steps, the buoy data has been averaged over every 3 h. The accuracy of buoymeasurement is
0.002 °C (Venkatesan et al 2013).

The skills of our SST predictions are assessed against SST frombuoys and from eddy-resolving high-
resolution (∼9 km)GlobalOcean Physics Reanalysis (GLORYS12V1; Lellouche et al 2021) and eddy-resolving
high-resolution (∼9 km) forecast from IndianOceanHighResolutionOperationalOcean Forecast System (IO-
HOOFS) (Francis et al 2020) that uses initial condition from the Regional Analysis of IndianOcean (Baduru et al
2019). TheGLORYS12V1 (henceforth onlyGLORYS) reanalysis uses theNEMOoceanmodel (Madec 2008)
with a horizontal resolution of∼9 km at the equator and 50 vertical levels. The EuropeanCentre forMedium-
RangeWeather Forecasts (ECMWF)ERA-Interim atmospheric reanalysis (Dee et al 2011) provides the surface

Figure 1.Time series of SST at 22.925 °N, 70.225 °E (location indicated by the red circle in the inset). The vertical dashed line
differentiates the testing period (2020–2022) from the training period (2012–2019). The inset illustrates the study area.
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fluxes toGLORYS. It assimilates satellite sea level anomalies, SST, sea ice concentration, and in situ temperature
and salinity profiles using a reduced-order Kalmanfilter derived from a singular evolutive extendedKalman
(SEEK)filter (Brasseur andVerron 2006) and 3D-Var scheme for bias correction. In contrast, IO-HOOFS uses
RegionalOceanModeling System (ROMS)with a horizontal resolution of∼9 kmand 40 vertical sigma levels as
the ocean engine for the IndianOcean and assimilates SST, satellite sea level anomaly, in situ temperature and
salinity using Local Ensemble TransformKalman Filter (Hunt et al 2007, Baduru et al 2019, Baduru et al 2025).
IO-HOOFS provides a 3-hourly ocean state forecast of the IndianOcean (30 °E–120 °E; 30 °S-30 °N).

2.2.Method
LSTMnetworks, as an enhanced formof RNN, address both the issue of long-distance dependence—an
inherent challenge for traditional RNNs—and the problems of exploding or vanishing gradients that are
commonly encountered in neural networks (Graves 2012, Tan et al 2018, Contractor andRoughan 2021). These
networks are particularly effective in processing sequence data, as they are known to reduce the nonlinearity and
complexity of sequences through decomposition. Their unique structure includes three key gates—input,
forget, and output—that control theflowof information. These gates allowLSTMs to decide what information
to keep, discard, or process, helping them retain important context over time (Sarkar et al 2020,Hao et al 2024).
The forget gate removes unnecessary information, the input gate adds new information, and the output gate
produces thefinal result. The cell state serves as amemory that holds critical information across time steps,
making it easier for the network to learn patterns in sequential data. Non-linear activation functions like sigmoid
and hyperbolic tangent help capture complex relationships, while weights and biases fine-tune the learning
process (Hochreiter and Schmidhuber 1997,Wei et al 2018,Hao et al 2024). They are widely used in areas such as
time series forecasting and subsurface temperature prediction, as they effectivelymodel sequential data (Han
et al 2023, Vytla et al 2025). LSTM is implemented in our study following the steps prescribed inWei et al (2018)
andHao et al (2024).

We combine the LSTMneural networkmodel with theVMDalgorithm to leverage these advantages to
predict the SST for different lead times. This combined approach is called theHybridmodel in this study. LSTM
architecture has one LSTM layer with 50 neurons and the Relu activation function followed by a fully connected
layer. It is trained using 20 epochs, a batch size of 32, a learning rate of 0.001, theAdamoptimizer andmean
squared error (MSE) as the loss function. VMD is a frequency domain-based, quasi-orthogonal, and completely
non-recursivemulti-scale signal decomposition technique introduced byDragomiretskiy andZosso (2014). It
formulates a variational problem, using theHilbert transform formarginal spectrum computation,Wiener
filtering for denoising, and the alternating directionmultipliermethod to handle unconstrained optimization.
VMDeffectively breaks down local features with similar frequencies while remaining robust to noise. Just like
the Empirical DecompositionMode (EMD) algorithm (Huang et al 1998) that transforms signal decomposition
into recursive decompositionmodes called intrinsicmode functions (IMFs), the VMDalgorithm transforms the
signal decomposition into completely non-recursive IMFs. To determine the optimal VMDparameters, we
conducted sensitivity experiments varying the number of IMFs from3 to 7. Based on predictive performance
and computational efficiency, 5modes (4 IMFs+ 1 residual)were found optimal for our SST time series. Since
decomposition is applied at each grid point (∼5.5 km resolution), a higher number of IMFs significantly
increases computational cost. Other VMDparameters used areα= 2000 (moderate bandwidth constraint) and
tolerance value of 1.e−7. In this study, we have decomposed the normalized (minimum-maximum
normalizationmethod) SST time series—either fromOSTIAor from a buoy—at each grid point into 5 IMFs—4
IMFs and 1 residual (5th IMF). Infigure 2, thefive IMFs of the SST time series shown infigure 1 are presented for
the readers to imbibe the qualitative features of the IMFs. Each of the IMFs represent a specific frequency band of
the original SST time series.

Distinct LSTMmodels, each designed for a pre-designated lead time, are developed for each IMF (five IMFs
in our study) at each grid point. At any given grid point and time, IMFs are estimated from the last 8 years (2922
time steps) of SST observations at that location.However, only themost recent 25 IMF values from each IMF are
fed into their corresponding LSTMmodels, which then generate the predicted corresponding IMF value for the
specified lead time. In essence, this process produces five predicted IMF values from the five LSTMmodels at
each grid point at a given time. Thefinal SST prediction at that grid point is the sumof thesefive predicted IMFs.
Note that the prediction of SST at any location is independent of SST of all other locations. This procedure is
repeated for all time steps of the study period (training and testing) beforemoving on to the next grid. The hybrid
model is therefore a rolling predictionmodel for SST.Wewould like to apprise the readers that the IMFs change
if the period of decomposition (which is 8 years here) is altered. Figure 3 shows a schematic diagramof our
machine learning framework for a given grid location at an instant.Wewould also like to emphasize that the
hybridmodel does not have access to the testing data during the training phase, ensuring no leakage or bias.
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As an evaluationmetric, we use RMSE and Pearson correlation coefficients to evaluate the performance of a
model in this study. The lower RMSE (larger correlation coefficient) implies greater accuracy in themodel’s
predictions. Themeasures like RMSE and correlation coefficient determine the accuracy and skill of themodel.
However, it is important to draw attention that the non time-dependent performance quality like reliability and
sharpness of a forecast is best analyzed through probability densities likemarginal and conditional probability

Figure 2.The five IMFs of the SST time series at 22.925 °N, 70.225 °E for the period 2012–2020. This location exhibits the highest SST
variability within our domain.

Figure 3. Schematic representation of theworkflowof the hybridmodel framework at any grid point at an instant.
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analysis (Murphy 1993). For example, to assess the reliability of the forecast one should look at the conditional
distribution of the observation given a forecast. A sharp conditional distribution centered around the given
forecast indicates that the forecast is generally alignedwith the observations,making it reliable.We shall analyze
all thesemetrics and these distributions in detail in the subsequent section.

3. Results and discussion

Weaddress each of the questions raised in the Introduction in succession.We start with comprehensively
addressing the veracity of the forecasted SSTmaps (3-day lead time) from the hybridmodel beforemoving on.

3.1. Fidelity of the hybridmodel SSTpredictions
It’s not surprising that the domain-averaged correlation (RMSE) decreases (increases)with increasing lead times
for daily-averaged SST predictions from the hybridmodel with a lead time of 3 days when compared toOSTIA
SST for the testing period 2020–2021 (see figure 4(a)). Even for a lead time of 3 days, the domain-averaged
correlation is as high as 0.974while the domain-averaged RMSE is 0.393 °C.During 2020–2021, the domain-
averaged correlation coefficient forGLORYS over the same study area is 0.968while the domain-averaged
RMSE is 0.47 °C—marginally inferior to the 7th day predictions from the hybridmodel (see figure 4(a)). In
short, on an average, the hybridmodelmanages to simulate the SST better thanGLORYS 7 days ahead of time. It
is also important to assess the skill of the hybridmodel at afiner scale and analyze the distribution of large RMSEs
across both thesemodels. This shall indicate how abundant large RMSEs are in these twomodels. This will also
indicate how the hybridmodel shall fare in location specific forecasts and ameasure of themaximumRMSE that
can be expected if a location is randomly chosen anywherewithin the domain of our study. Infigure 4(b), we plot
the normalized probability density of the RMSE (red) and correlation coefficient (blue) in SST fromGLORYS
(dashed line) and hybridmodel (3 day lead time; solid line) over the domain to assess the performance of these
two systems at a finer scale. The probability density plot demonstrates that themost probable RMSEof the
predicted SST is smaller than themost probable RMSEof theGLORYS SST, i.e., the hybridmodelmanages to
forecast amore accurate SST overmost of the region compared to the SST reanalysis generated byGLORYS—
that too 3 days ahead of time. The tail of the probability density shows that there aremore locations inGLORYS
that suffer from larger RMSE. It also shows that the largest RMSE that can be found in the hybridmodel is about
∼0.6 °C in contrast to∼1.1 °C inGLORYS. A similar inference of better skill in the hybridmodel emerges from
the probability density plot of correlation. There aremore locations showing higher correlation in the hybrid
model compared toGLORYS. These plots suggest that the 3rd day predicted SST from the hybridmodel
outperforms the SST reanalysis fromGLORYS at bothfiner and coarser spatial scales. It is however apt to
mention here that the number of data used to plot the probability density function differs for these two systems
owing to the difference in horizontal resolution. The sample size is larger for the hybridmodel because of its high
resolution. A detailed investigation is therefore warranted. Unless otherwisementioned, henceforth all reference
to SST from the hybridmodel shall refer to the SST from the hybridmodel with a lead time of 3 days. In fact, the
SST from the hybridmodel fares reasonably well up to a lead time of∼7–10 days on a coarser spatial scale similar

Figure 4. (a)Domain-averaged RMSE (red) and correlation coefficient (blue) in SST for different lead times from the hybridmodel
with respect toOSTIA SST. The left (right) y-axis refers to RMSE (correlation). The red (blue)horizontal line indicates the value of
RMSE (correlation coefficient) in SST fromGLORYSwith respect toOSTIA SST. (b)The normalized probability distribution function
of RMSE (red) and correlation coefficient (blue) in SST over the domain fromGLORYS (dashed line) and the hybridmodel with a lead
time of 3 days (solid line). The lower (upper) x-axis represents correlation (RMSE).
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tomany other LSTMmodels (Shao et al 2021, Vytla et al 2025). Since one of the objectives of this study is to
examine if the hybridmodelmanages to simulate the observedfine scale SST variability, we restrict this
investigation to a lead time of 3 days.

Infigure 5, we plot themaps of correlation coefficient andRMSE of daily SST fromhybridmodel and
GLORYSwith respect toOSTIA SST estimated over the period 2020–2021 alongwith the difference between the
two. To carry out this analysis, the hybridmodel SST is projected onto theGLORYS resolution. The correlation
coefficients at all locations are larger than 0.9 across both themodels. And theRMSE appears smaller for the
hybridmodel SST acrossmost locations.However, there are locationswhereGLORYS SST ismore alignedwith
the observations (see figure 5(f)). However, it is evident that the hybridmodel SST demonstrates higher (lower)
correlation (RMSE) acrossmost of the domain—particularly close to the coast. Except over a region near the
southern boundary of the domain, the hybridmodel appears to fare better.Wewould like to alert the readers
that the PearsonCorrelationCoefficient is not a generalmeasure of dependency and therefore onemust dig
deeper before asserting the supremacy of the predictive skill of the hybridmodel.

We plot themarginal probability distribution of the dailyOSTIA SST, hybridmodel SST andGLORYS SST
during the testing period infigure 6. Themost probable SST inOSTIA lies in the range between 28 °C–30 °C, a
feature reasonably reproduced by both the hybridmodel andGLORYS. Even though both the hybridmodel and
GLORYS replicate the qualitative features of the observed SST probability density, GLORYS however generates a
spurious high density for SST at∼28 °Cand∼30 °C. Also, the tails of the probability density of the hybridmodel
SST ismore alignedwith the tails of the observed SST, whereasGLORYS shows deviations particularly for lower
range of SST. In short, themarginal probability density of the hybridmodel SST is better alignedwith the
marginal probability density of the observed SST. From a statistical perspective, Kullback–Leibler (KL, Kullback
and Leibler 1951) divergence is the expectation value of the logarithmic difference between the probability
distribution of two variables. Lower values indicate better alignment between the two distributions. In contrast,
mutual information (MI, Thomas andThomas 2005) quantifies the shared information between two variables,
reflecting howwell one predicts the other. Symmetric Uncertainty (SU,Witten et al 2005) is a normalized form
ofMI (0 to 1) thatmeasures agreement between prediction and observationwhile accounting for their individual
uncertainties. A higherMI signifies enhanced skill. In this analysis, theKL divergence values between the hybrid
model SST (GLORYS SST) and theOSTIA SST is 0.0021 (0.0140) suggesting amore accurate probabilistic
representation of SST in the hybridmodel. Similarly, the SUmetric based onMI between the observations and
the hybridmodel (0.3994) is higher than that between observations andGLORYS (0.3564), implying that the
hybridmodel retainsmore information about the observed SST, leading to better predictive performance. These
statisticalmeasures collectively confirm thatwhile bothmodels capture the general characteristics of the
observed SST distribution, the hybridmodel exhibits superior agreement in both distributional shape and
predictive accuracy. This is surprising given that the skill of the predicted SSTwith a lead time of 3 days from a

Figure 5. (a)Correlation coefficient of predicted SST in the hybridmodel with a lead time of 3 dayswith respect toOSTIA SST, (b)
Correlation coefficient of SST reanalysis fromGLORYSwith respect toOSTIA SST. (c)Difference between panel (a) and panel (b). (d)
RMSE in predicted SST in the hybridmodel with a lead time of 3 dayswith respect toOSTIA SST, (e)RMSE in SST reanalysis from
GLORYSwith respect toOSTIA SST. (f)Difference between panel (d) and panel (e).
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machine learningmodel is better than the skill of the SST reanalysis fromGLORYS—one of the best state-of-
the-art reanalysis available today.

3.2. Reliability of SST forecasts
Wenow ask the question: which of the two systems—hybridmodel andGlobalOcean Physics Reanalysis
(GLORYS) – ismore reliable? GLORYS do not produce forecasts butwe assumeGLORYS to represent the upper
bound of predictive skill of forecasts of any dynamical system. To assess the reliability (Murphy 1993) of the SST
predictions from the hybridmodel versusGLORYS SST reanalysis, we analyze the conditional distribution of
the observedOSTIA SST given the hybridmodel (figure 7(a)) and the conditional distribution of the observed
OSTIA SST givenGLORYS SST (figure 7(b)). In both cases, the highest density regions align along the diagonal,
indicating a strong correlation between the forecasts and observations. However, notable differences emerge in
their probability distributions. The hybridmodel (figure 7(a)) exhibits a sharper andmore concentrated
probability distribution along the diagonal, suggesting that it provides amore reliable and less dispersed
prediction ofOSTIA SST. In contrast, GLORYS (figure 7(b)) shows a broader spread, particularly at lower
temperatures, indicating greater uncertainty in its predictions. The inset plots further illustrate this difference.
When the hybridmodel (GLORYS) predicts (simulates) 30 °C, the observed SST is generally found to be around
30 °C (see inset of figure 7(a)). However, there are rare occasions across both themodels when themodel
predicts/simulates with an error of±1 °C. In contrast, when the hybridmodel predicts 20 °C, the observed SST
remains largely aligned to the hybridmodel prediction.However, whenGLORYS ‘predicts’ 20 °C, observed SST
exhibits a broadermulti-peaked distribution signalling significant deviations from theGLORYS ‘forecast’ (see
inset offigure 7(b)). The observed SST is found to be∼20.75 °Cduringmost of the time against GLORYS’s
estimation of 20 °C.Tomore effectively illustratemodel performance across varying temperature ranges, we
pose the following question:What is the RMSEof sea surface temperature (SST) from theHybridmodel and
GLORYS, relative to SST fromOSTIA, computedwithin each 0.5 °C interval of observed SST between 18 °C
and 32 °C?

Figure 7(c) presents the RMSE in SST from theHybridmodel (blue) and theGLORYS dynamicalmodel
(red) across different observed SST intervals, alongside the number of observations (black)within each 0.5 °C
temperature bin across the spatio-temporal domain. Bothmodels exhibit qualitatively similar RMSEpatterns
across the SST spectrum.However, performance notably degrades in the lower temperature range (18 °C–
20 °C), where theHybridmodel shows a slight improvement overGLORYS.

This temperature range (18 °C–20 °C) corresponds to approximately 33 grid points within the study
domain, all located near the coast over shallow bathymetry (7–16mdepth). These results suggest that both
models face challenges in shallow coastal environments, particularly under lower temperature conditions. It is
also important to note that observations in this low-temperature range are relatively sparse, as temperatures
below 20 °Coccur only briefly. Consequently, theHybridmodel—being data-driven—may bemore susceptible
to errors in this range due to limited training data. Thesefindings suggest that the hybridmodel provides a very
reliable forecast that outsmarts the hindcasts fromone of the best state-of-the-art SST reanalysis. It further

Figure 6.Marginal probability distributions forOSTIA SST (black), hybridmodel SST (red) andGLORYS SST (blue).
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signifies that no existing SST forecasts from any dynamicalmodel can competewith the forecasts from the
hybridmodel if our assumption of GLORYS representing best possible forecasts stand true.

3.3. Prediction of SST fronts
Given that the hybridmodel predicts SST over our study areawith a lead time of 3 days with excellent accuracy
and reliability, we assess the ability of themodel to predict small-scale features like SST fronts which are
necessary for Potential Fishing Zone (PFZ) forecasts. The SST fronts are identified using CayulaCornillon
Algorithm (Cayula andCornillon 1992). Grossly stating, a bimodal distribution is sought for within a spatial
scale of 32 times the grid resolution. If such a distribution exists, the SST fronts are detectedwithin this
algorithm if there is a difference of a certain threshold (set to 0.3 °C in this study) between the twomeans of the
bimodal distribution. SinceGLORYS SST is of a relatively coarser resolution, it is projected on to the same
resolution ofOSTIA before estimating the SST fronts. Infigure 8, SST fronts with a lead time of 3 days (red) are
plotted alongwith the observed SST fronts (black) and SST fronts fromGLORYS (blue) for a particular day (07
Feb, 2020) during the study period. The predicted SST fronts from the hybridmodel are remarkably alignedwith
most of the observed SST fronts. In contrast, GLORYS generates some spurious SST fronts. The spurious SST
fronts inGLORYSmay be an offshoot of the downscaling ofGLORYS SST and toomuch should not be read into
it. The qualitative aspect of the plot remains similar for other days during the study period aswell (not shown). In
short, the hybridmodel SST fronts are accurate, i.e., the hybridmodelmanages to forecast the small-scale
behaviour of SSTwith a lead time of 3 days. This raises the possibility of providing robust PFZ forecasts that are
likely to benefitmillions of fishermen.

Figure 7. (a)Conditional probability distribution of observations (OSTIA SST) given hybridmodel SST. (b)Conditional probability
of observations (OSTIA SST) givenGLORYS SST. Red color and blue color in the inset of (a) represents the conditional probability of
OSTIA SST at a given hybridmodel SST= 30 °C (red) and a givenGLORYS SST= 30 °C (blue), respectively. Similarly, the inset of (b)
shows the conditional probability distribution ofOSTIA SST at a given hybridmodel SST= 20 °C (red) and a givenGLORYS
SST= 20 °C (blue). (c)Plot of RMSE in SST inHybridModel (blue) andGLORYS (red) along every 0.5 °C intervals of observed SST.
The black line illustrates the number of observations (right axis in log scale) across the domain during the study period in every 0.5 °C
interval of observed SST.
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3.4.High frequency SST predictions
Now that it is comprehensively demonstrated that the hybridmodel has excellent predictive skill in forecasting
daily-averaged SST, it is important to assess how the hybridmodel fares in predicting high frequency SST
variability. Infigure 9, we plot the 3 hourly SST predicted by the hybridmodel with a lead time of 24 h (red) along
the observed 3-hourly SST (black) from a buoy located at 18.5 °N, 67.5 °E. A hybridmodel was configured only
for this specific location to predict 3-hourly SSTwith a lead time of 1 day (24 h). The hybridmodel for this
analysis was trained for 1 year (mid-September 2019 -mid-September 2020)whereas the testing period
extended for the subsequent 3months. The hybridmodelmanages to predict the 3-hourly SSTwith remarkable
accuracywith a lead time of a day. The correlation is almost unity (0.98) and the RMSE is 0.137 °C. Expectedly,
the skill of the hybridmodel declines with increasing lead times (not shown). To provide the readers with an
insight about howdynamicalmodels behave at such high frequencies, we have also overlaid 3-hourly SST from
our inhouse operational forecast system IO-HOOFS (blue) infigure 9. It is evident that the forecast skill of the
dynamicalmodel lags far behind the hybridmodel even for high frequency forecasts. The RMSE in IO-HOOFS
SST is∼2.5 times larger and the correlation considerably decreases. All the above analyses show that predictions
in SST from the hybridmodel agreewith the observed SST features across low (daily-averaged) and high (3
hourly averaged) frequencies.

Figure 8. SST fronts from (a)OSTIA (black), (b)GLORYS (blue) and (c) hybridmodel (red)with a lead time of 3 days on 07 February
2020.

Figure 9.Time series of SST from a buoy (black), IO-HOOFS (blue), and from the hybridmodel with a lead time of 24 h (red). The
green star in the insetmarks the location of the buoy at 18.5 °N, 67.5 °E.
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3.5. Prediction skill during extreme events
Since the hybridmodel SSTmanages tomimic the observation at both low and high spatio-temporal scales, it is
important to assess if the high frequency predictions from this hybridmodel stays true during extreme events.
These evaluations are difficult during extreme events because of primarily two reasons—1) there should be an
observation platform somewhere in the vicinity of the cyclone trajectory to observe the high frequency SST
evolution and 2) the instrument shall remain operational during the extreme events which seldomhappens.
Satellite SST observations are not useful; it often turns out to be unreliable because of cloud cover and rain
during tropical cyclones (Wentz et al 2000) and it does not observe high frequency SST. Fortunately, the same
buoy (67.5 °E, 18.5 °N), located about 250 kms away from the trajectory of the very severe cycloneVayu in the
Arabian Sea, observed SST at a temporal frequency of 3 h (see inset offigure 10 for the buoy locationwith respect
to the cyclone trajectory). A hybridmodel was configured only for this specific location to predict 3-hourly SST
during theVayu cyclonewith a lead time of 1 day (24 h). The hybridmodel was trained for a year using historical
3-hourly-averaged buoy SST observations (30 Jan 2018 to 30 Jan 2019), validated for 3months (31 Jan 2019 to 01
May 2019) and tested for another 3months (02May 2019 to 31 July 2019). The testing period encompasses the
cyclone passage period (June 10, 2019–June 17, 2019). Infigure 10, we plot the observed SST (black) and the
predicted SSTwith a lead of 1 day (red) alongwith the 3 hourly SST forecasts from IO-HOOFS (blue) at this
location. The sudden drop of∼1.5 °C in the observed SST on June 12, 2019 bears testament to the observed fact
that the cycloneVayu reached the buoy vicinity on the earlymorning of June 12, 2019. The hybridmodel
facilitates a similar drop but suffers from a lag of∼27 hwhich is longer than the prediction horizon of 24 h
therebymaking it unsuitable for SST predictions during extreme events. This is not surprising given that the
hybridmodel did not experience any extreme events during the course of its training. Nevertheless, the RMSE
remains low (0.18 °C). The 3-hourly forecast from IO-HOOFSwith a lead time of 1 day appears to be out of
phasewith the observations by a few hours and the drop in SST ismore pronounced. The strongwinds
(∼36 m s−1) associatedwith the cyclone facilitates a SST drop by∼2.75 °C—about twice the dropwitnessed in
the observation—possibly an outcome of inaccurate parameterization in themodel dynamics. This results in a
large RMSEof 0.5 °C in themodel SST during the cyclone period. In summary, this analysis illustrates that the
hybridmodel, equippedwith only historical SST inputs, is insufficient for SST predictions during extreme
events, likely because of themodel’s limited exposure to extreme events during training.However, itmay be
possible to predict the high frequency SST evolution under this hybrid framework by including additional
predictors like sea surface height,mixed layer depths, cyclone characteristics etc (Cui et al 2023).

3.6.Marine heat wave (MHW) forecast skill
It will be interesting to explore how good the hybridmodel is in predictingMHWswhich is defined as a discrete,
prolonged, and anomalouswarmwater event (Hobday et al 2016).We used 30 years ofOSTIA SST from1991 to
2020 as the climatological baseline.MHW is identified by the threshold value of the 90th percentile of daily
climatology, and theMHWis announced if the SST persists above this threshold for aminimumof 5 days. The
MHWevents are deemed to be separate events if a gap of two days ormore exist between two detections. In
figures 11(a)–(c), we have plottedOSTIA SST, hybridmodel SSTwith a lead of 3 days, andGLORYS SST
reanalysis at 22.875 °Nand 70.125 °E alongwith the climatological baseline (green)during the period
2020–2021. This location is known towitness frequentMHWs—about 2–2.5MHWs every year on an average
(see figure 1 in Saranya et al 2022). The observedMHWsoccur each yearmostly during April toNovember at

Figure 10.Time series of SST from a buoy (black), hybridmodel with 1 day lead time (red) and IO-HOOFS (blue) at the buoy location
(67.5 °E, 18.5 °N). (inset)The cyclone trajectory is shown in gray whereas the buoy location ismarked as a green star.
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this location. It showsmultipleMHWevents during this periodwith some events persisting for a couple of
weeks. The hybridmodel predicts theMHWswith reasonably good accuracywith a lead time of 3 days. The
predictedMHWs aremostly alignedwith the observedMHWs. Itmanages to predictmost of the pronounced
MHWsbut falters at predicting someminorMHWsparticularly during the onset of boreal summer. In contrast,
GLORYS estimates a singleMHWevent during 2020 and therefore fails to delineate themultipleMHWs that are
observed during this period. This reflects a persistently warmSST inGLORYS at this location. In short, the
hybridmodelmanages to predict the pronouncedMHWswith reasonable certaintywith a lead time of 3 days.

4. Conclusions

Wehave developed a univariate hybridmachine learningmodel for prediction of regional SSTmaps. The
historical SST time-series at each location is decomposed into IMFswhich are thereafter fed to themachine
learningmodel LSTMwith a specified lead time. The predicted SST is then reconstructed from the output IMFs.
Likewise, this process is repeated for each locationwithin the domain to generate the predicted regionalmap of
SST.Unlikemanymachine learningmodels wherein a suite of variables act as predictors, only historical SST acts
as the predictor in our hybridmodel without compromising on the skill of the predictand. There are amultitude
of advantages in this approach. This approach aids to generate high resolution SSTmapswhichwere otherwise
not possible owing to nonavailability of high resolution datasets of other variables. For example, daily sea surface
height anomaly, which often acts as a predictor to SST (Shao et al 2021, Cui et al 2023), is only available at a
resolution of 1/8°whichwould have limited the resolution of the final SST regionalmap. The use of only
historical SST data also uses less computational resources and executes the predictions at a faster rate. Even
though the present study is designed to forecast SST over a small domain, it can be seamlessly extended to a
global domain. The success of this framework demonstrates that a basin-scale SST prediction system can be
treated as a collection of localized independent low-dimensional systems insulated from the influence of all
other state variables and forcings. This challenges our traditional understanding of high-dimensional dynamical
systems, like oceans, where strong cross-correlations between different state variables and finite auto-
correlation length scales are crucial for their temporal evolution.

Figure 11. SST time series from (a)OSTIA (black), (b) hybridmodel with a lead time of 3 days (black) and (c)GLORYS (black) at
22.875 °Nand 70.125 °E during 2020–2021. The green line represents the climatological baseline in all the three panels.MHWevents
(detected using freely availablemarineHeatWaves.py) are shaded in red in each of the panels.
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We show that the forecasted daily SST from the hybridmodel with a lead time of 3 days comeswith a very
high correlation and lowRMSE—both close to the coast and in openwaters—when compared against daily
OSTIA SST. The skill of this predicted SST outperforms the skill of the high-resolution SST reanalysis from
GLORYS. The skill remains higher till a prediction horizon of 7 days. In short, a high resolution daily SST
regionalmap (1/20° spatial resolution) can be generated aweek prior to the availability of a SST reanalysis from
a state-of-the-art numericalmodel equippedwith data assimilation.

The predicted regional SSTmap is adept at reproducing the fine-scale spatial features of the observations. It
predicts the SST fronts with remarkable accuracy with a lead time of 3 days which can be beneficial to the
fishermen community to locate potentialfishing zones. The hybridmodel is also skillful at predicting high
frequency SST signals during normal conditionswith a lead time of 1 day. The correlation (RMSE) of the
predicted SST remains high (low).We have also shown how this hybridmodel detects theMHWs about 3 days
prior to its occurrence. This prior knowledgemay be used tomitigate harmful events like coral bleaching. The
hybridmodel is however inept to predict high frequency SST signals during extreme events.

The daily predicted SSTmaps raise interesting possibilities. For example, these predicted SSTsmay be
treated as synthetic observations and assimilated in an oceanmodel during the forecast which is likely to
improve the ocean state forecasts of the numericalmodel. These synthetic observations shall not only improve
the surface temperature during forecasts but also the vertical temperature structures of the ocean.With the
proposed advent ofmicrosatellites, this frameworkmay be used to predict SSTmaps at a higher temporal
frequency like 3 h or 6 h. Such high frequency synthetic SSTmapsmay be used to force atmosphericmodels to
improve the atmospheric forecasts.

Acknowledgments

The authors duly acknowledge the funding received from theMinistry of Earth Sciences, Govt. of India.We
extend our sincere thanks to the ICT division at INCOIS formanaging the computing facility and timely
installation of the requiredmodules.We acknowledgeDr R. Venkat Seshu, INCOIS for providing the buoy data.
This is INCOIS contribution number 578.

Data availability statement

All the data except one buoy data is publicly available. The buoy data can be shared upon reasonable request. The
data that support the findings of this study are available upon reasonable request from the authors. https://data.
marine.copernicus.eu/product/SST_GLO_SST_L4_REP_OBSERVATIONS_010_011/description https://
data.marine.copernicus.eu/product/GLOBAL_MULTIYEAR_PHY_001_030/services https://doi.org/10.
5281/zenodo.15003614 https://odis.incois.gov.in/essdp/searchMetadata?
queryText=&orgName=NIOT&contactName=&start_date=&end_date=&north=90&south=-90&west=-
180&east=180

Authors contribution

Conceptualization:AP, BB and JP;Writing:AP, JP, BB;Analysis: JP, BB, ACR, BP, andVD; Interpretation: JP,
BB andAP.

ORCID iDs

Jagdish Prajapati https://orcid.org/0000-0002-5279-9729
Balaji Baduru https://orcid.org/0000-0001-9641-4109
Biswamoy Paul https://orcid.org/0000-0003-1742-6799
VinodDaiya https://orcid.org/0009-0002-1870-0374
Arya Paul https://orcid.org/0000-0002-6635-3058

References

Aparna S, D’souza S andArjunNB2018 Prediction of daily sea surface temperature using artificial neural networks Int. J. Remote Sens. 39
4214–31

BaduruB, Paul B, BanerjeeD S, Sanikommu S and Paul A 2019 Ensemble based regional ocean data assimilation system for the Indian
Ocean: implementation and evaluationOceanModell. 143 101470

14

Environ. Res. Commun. 7 (2025) 075002 J Prajapati et al



BaduruB, Paul B, Athul CR, Paul A and Francis PA 2025 Improving IndianOcean analysis usingROMSwith sea level anomaly assimilation
J. Earth Syst. Sci. 134 (2) 1–19

Brasseur P andVerron J 2006The SEEK filtermethod for data assimilation in oceanography: a synthesisOceanDyn. 56 650–61
Cayula J F andCornillon P 1992 Edge detection algorithm for SST images JTECH 9 67–80
Chatterjee A, Anil G and Shenoy LR 2022Marine heatwaves in the Arabian SeaOcean Sci. 18 639–57
ChoiH-M,KimM-K andHyunY2023Deep-learningmodel for sea surface temperature prediction near theKorean PeninsulaDeep-Sea

Res. II: Top. Stud. Oceanogr. 208 105262
Contractor S andRoughanM2021 Efficacy of feedforward and LSTMneural networks at predicting and gap filling coastal ocean timeseries:

oxygen, nutrients, and temperature Front.Mar. Sci. 8 1–17637759
CuiH, TangD,MeiW, LiuH, Sui Y andGuX2023 Predicting tropical cyclone-induced sea surface temperature responses usingmachine

learningGeophys. Res. Lett. 50 1–11
DonlonC J,MartinM, Stark J, Roberts-Jones J, Fiedler E andWimmerW2012 116 140–158
DeeDP,Uppala SM, SimmonsA J, Berrisford P, Poli P, Kobayashi S andVitart F 2011The ERA-interim reanalysis: configuration and

performance of the data assimilation systemQJRMeteorol. Soc. 137 553–97
Dragomiretskiy K andZossoD 2014Variationalmode decomposition IEEETSP 62 31–544
Francis P A et al 2020High-resolution operational ocean forecast and reanalysis system for the Indian oceanBull. Am.Meteorol. Soc. 101

E1340–56
Good S et al 2020The current configuration of theOSTIA system for operational production of foundation sea surface temperature and ice

concentration analysesRemote Sens. 12 720
Graves A 2012 Long Short-TermMemory (Springer) (https://doi.org/10.1007/978-3-642-24797-2_4)
Halliwell GR 2004 Evaluation of vertical coordinate and verticalmixing algorithms in theHYbrid-coordinate oceanmodel (HYCOM)

OceanModell. 7 285–322
HanZhangH,Mengyuan J, HaoyuZ, Longjie L, Yunxia Z, Jie T,Di T andYanminZ 2023Deep learning approach for forecasting sea surface

temperature response to tropical cyclones in theWesternNorth PacificDeep-Sea Res. I: Oceanogr. Res. Pap. 197 104042
HaoY, Lu J, PengG,WangM, Li J andWeiG 2024 F10.7 daily forecast using LSTMcombinedwithVMDmethod SpaceWeather 22

e2023SW003552
HobdayA J et al 2016Ahierarchical approach to definingmarine heatwavesOceanogr. Prog. 141 227–38
Hochreiter S and Schmidhuber J 1997 Long short-termmemoryNeural Comput. 9 1735–80
HuangNE et al 1998The empiricalmode decomposition and theHilbert spectrum for nonlinear and nonstationary time series analysis

Proceedings of the Royal Society of London:Mathematical, Physical and Engineering Sciences 454 903–95
Hughes TP, Kerry J T andWilson SK2017Global warming and recurrentmass bleaching of coralsNature 543 373–7
Hunt BR, Kostelich E J and Szunyogh I 2007 Efficient data assimilation for spatiotemporal chaos: a local ensemble transformKalman filter

Phys. D:Nonlinear Phenom 230 112–26
IOCCG2009Reports of the international ocean-colour coordinating group, no. 8) (Dartmouth,NS: InternationalOcean-Colour

CoordinatingGroupRemote Sensing in Fisheries and Aquaculture (IOCCG) (https://doi.org/10.25607/OBP-98r)
Kullback S and Leibler RA 1951On information and sufficiencyTheAnn.Math. Stat. 22 79–86
LargeWG,McWilliams J C andDoney SC1994Oceanic verticalmixing: a review and amodel with a nonlocal boundary layer

parameterizationRev. Geophysics 32 363–403
Lellouche JM et al 2021The copernicus global 1/12° oceanic and sea ice reanalysisEGUGeneral Assembly Conf. Abstracts EGU21-14961

(https://doi.org/10.5194/egusphere-egu21-14961)
LiuG et al 2013NOAA coral reef watch 50 km satellite sea surface temperature-based decision support system for coral bleaching

managementNOAATechnical Report, NESDIS, 143 https://repository.library.noaa.gov/view/noaa/743
MadecG 2008NEMOOcean Engine Note du Pôle demodélisation Institut Pierre-Simon Laplace (IPSL) France 27 https://frouingroup.ucsd.

edu/Most_recent_figs/Refs/NEMO_book_v3_3.pdfhttps://www.scirp.org/reference/referencespapers?referenceid=2978123
McTaggart-CowanR,Davies E L, Fairman JG Jr, GalarneauT J Jr and SchultzDM2015Revisiting the 26.5 °C sea surface temperature

threshold for tropical cyclone developmentBull. Am.Meteorological Soc. 96 1929–43
Mills K E et al 2013 Fisheriesmanagement in a changing climate: lessons From the 2012 ocean heat wave in theNorthwest AtlanticOceanogr.

26 191–5
Mohanty PC, KushabahaA,Mahendra R S,Nayak RK, SahuBK, Pattabhi RamaRao E and Srinivas KumarT 2021 Persistence ofmarine

heat waves for coral bleaching and their spectral characteristics aroundAndaman coral reef Environ.Monit. Assess. 193 491
MurphyAH1993What is a good forecast? An essay on the nature of goodness in weather forecastingWAF 8 281–93
Oka E andAndoK 2004 Stability of temperature and conductivity sensors of argo profilingfloats J. Oceanogr. 60 253–8
Patil K, DeoMCandRavichandranM2016 Prediction of sea surface temperature by combining numerical and neural techniques JTECH 33

1715–26
RaoP, JiangW,HouY,ChenZ and Jia K 2018Dynamic change analysis of surfacewater in the yangtze river basin based onMODIS products

Remote Sens. 10 1025
Roxanne L 2016Exploring the Future ofMarine Farming inNewZealandUnder Climate Change Conditions: Using Sea Surface Temperature

(Canterbury:) (LincolnUniversity)
Sarkar P P, Janardhan P andRoy P 2020 Prediction of sea surface temperatures using deep learning neural networks SNAppl. Sci. 2 1458
Saranya J S, RoxyMK,Dasgupta P andAnandA 2022Genesis and trends inmarine heatwaves over the tropical IndianOcean and their

interactionwith the Indian summermonsoon J. Geophys. Res. Oceans 127 e2021JC017427
SeppH and Schmidhuber J 1997 Long short-termmemoryNeural Comput. 9 1735–80
ShaoQ, LiW,HanG,HouG, Liu S, Gong Y andQuP 2021Adeep learningmodel for forecasting sea surface height anomalies and

temperatures in the SouthChina Sea J. Geophys. Res. Oceans 126 1–18
ShuangX,DejunD,XuerongC, Xunqiang Y, Shumin J,Haidong P andGuansuoW2023Adeep learning approach to predict sea surface

temperature based onmultiplemodesOceanModell. 181 102158
TanY,HuQ,Wang Z andZhongQ 2018Geomagnetic indexKp forecasting with LSTMSpaceWeather 16 406–16
ThomasMandThomas J A 2005Elements of Information Theory (Wiley) 13–55
Trainer V L, Kudela RM,HunterMV,AdamsNG andMcCabeRM2020Climate extreme seeds a new domoic acid hotspot on theUSWest

Coast Front. Clim. 2 571836
Tripathi KC,DasML and Sahai AK 2006Predictability of sea surface temperature anomalies in the IndianOcean using artificial neural

networks IJMS 35 210–20 http://nopr.niscpr.res.in/handle/123456789/1518
Usharani B 2023 ILF-LSTM:enhanced loss function in LSTM to predict the sea surface temperature Soft Comput. 27 13129–41

15

Environ. Res. Commun. 7 (2025) 075002 J Prajapati et al



Venkatesan R, Shamji VR, LathaG,Mathew S, RaoRR,MuthiahA andAtmanandMA2013 In situ ocean subsurface time-series
measurements fromOMNIbuoy network in the Bay of BengalCurr. Sci. 104 1166–1177

Vytla V et al 2025 Forecasting of sea surface temperature usingmachine learning and its applications J. Earth Syst. Sci. 134 25
WangY, Zhang J, ZhuH, LongM,Wang J andYuP S 2019Memory inmemory: a predictive neural network for learning higher-order non-

stationarity from spatiotemporal dynamics 2019 IEEE/CVFConf. on Computer Vision and Pattern Recognition (CVPR) 9146–54
Wei L, ZhongQ, Lin R,Wang J, Liu S andCaoY 2018Quantitative prediction of high-energy electron integralflux at geostationary orbit

based on deep learning SpaceWeather 16 903–16
Wei L andGuan L 2021 Seven-day sea surface temperature prediction using a 3DConv-LSTMmodel Front.Mar. Sci. 9
Wentz F J, GentemannC, SmithD andCheltonD2000 Satellitemeasurements of sea surface temperature through clouds Science 288

847–50
Witten IH, Frank E,HallMA, Pal C J andDataM2005 Practicalmachine learning tools and techniquesDataMining 2 (Elsevier) 403–13
Wolff S, O’Donncha F andChenB 2020 Statistical andmachine learning ensemblemodelling to forecast sea surface temperature J.Mar. Syst.

208 103347
Xu L, LiQ, Yu J,Wang L, Xie J and Shi S 2020 Spatio-temporal predictions of SST time series inChina’s offshorewaters using a regional

convolution long short-termmemory (RC-LSTM)network Int. J. Remote Sens. 41 3368–89
Yang Y,Dong J, SunX, Lima E,MuQ andWangX 2018ACFCC-LSTMmodel for sea surface temperature prediction IEEEGeosci. Remote

Sens. Lett. 15 207–11
ZhengG, Li X, ZhangRH and Liu B 2020 Purely satellite data-driven deep learning forecast of complicated tropical instability waves Sci.

Adv. 6 eaba1482

16

Environ. Res. Commun. 7 (2025) 075002 J Prajapati et al


	1. Introduction
	2. Data and methods
	2.1. Data and study area
	2.2. Method

	3. Results and discussion
	3.1. Fidelity of the hybrid model SST predictions
	3.2. Reliability of SST forecasts
	3.3. Prediction of SST fronts
	3.4. High frequency SST predictions
	3.5. Prediction skill during extreme events
	3.6. Marine heat wave (MHW) forecast skill

	4. Conclusions
	Acknowledgments
	Data availability statement
	Authors contribution
	References



